
Two-particle interference
Kurt Gottfried
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

~Received 1 April 1999; accepted 24 June 1999!

The superposition principle leads to coherence phenomena that have no counterpart in classical
optics. Agedankenexperiment, due to Horne and Zeilinger, provides an especially clear illustration
of such phenomena, and is presented in a manner suitable to an introductory quantum mechanics
course. The experiment displays an interference pattern in the correlation between two particles
produced in a momentum-conserving decay, but no interference pattern when either particle is
observed separately; it also has interesting Einstein–Podolsky–Rosen-type correlations. ©2000

American Association of Physics Teachers.
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I. INTRODUCTION

Quantum mechanics is the only basic theory of phys
that claims to be rigorously linear. This may be read to im
that the superposition principle is the theory’s most fun
mental postulate. For that reason, simple illustrations
quantum mechanical superposition that are inherently dif
ent from the coherence phenomena of classical optics s
an important pedagogical end.1 An incisive example of such
an effect has been demonstrated by Mandel and his coll
rators in elegant experiments with two-photon states that
play an interference pattern in the correlation between
photons whereas no interference pattern appears when
one photon is observed.2

From a pedagogic viewpoint, these experiments are
maximally simple, however. For that reason we discus
gedankenexperiment due originally to Horne and Zeilinger3

that makes the same point with only a bit of algebra a
scalar diffraction theory, and requires no knowledge of s
or polarization. Therefore it is suitable to an introducto
course in quantum mechanics. The experiment also has
merit of displaying correlations that have characteris
Einstein–Podolsky–Rosen features.

II. TWO-PARTICLE INTERFEROMETRY

Consider two particlesa andb described by a wave func
tion C(rarb ;t). The probability for detectinga at ra andb at
rb in coincidenceis

Pab~rarb ;t !5uC~rarb ;t !u2. ~1!

The one-particle probability distributions for detectinga
whenb is not observed at all is

Pa~ra ;t !5E d3r bPab~rarb ;t !, ~2!

and similarly forPb(rb ;t).
Our purpose is to establish the following.

In any experimental setup that allows the two particles
traverse different paths, and in whichit is possible, in
principle, to determine the path taken by one particle
some observation on the other, neither particle will, by
itself, display an interference pattern~i.e., in Pa or in
Pb!, but there may be an interference pattern in thea–b
coincidence ratePab , i.e., in the correlation of position
for a andb. On the other hand, if the setup is such thatno
observation on one particle can, in principle, determi
143 Am. J. Phys.68 ~2!, February 2000
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the path of the other, then either particle by itself, o
both, may display an interference pattern~i.e., in Pa

and/orPb!, but there will be no interference pattern in th
correlationPab .

The words ‘‘in principle’’ allude, as we will see, to the fac
that whether or not an observation that actually determine
path is made does not matter—what matters is whether suc
an observation is possible at all.

The state that will be analyzed to establish these con
tions describes the particles produced in a decay proceA
→a1b, and the experimental setup is the two-particle int
ferometer shown in Fig. 1.

The interferometer consists of two parallel opaque scre
Sa and Sb , each pierced by two pinholes symmetrical
placed about the axis normal to the screens, and two par
detection screensDa and Db sensitive only toa and b, re-
spectively. The detectors record the coordinates of parti
striking them in coincidence, i.e., determine the joint pro
ability distributionPab .

This thought experiment is not far-fetched because th
are several real-life examples ofA. One is positronium, the
bound electron–positron system, whose ground state an
lates into two photons; another is the neutral kaonK0, a
particle that decays into twop mesons.

In the processA→a1b momentum is conserved, and s
the decay products~daughters! will go in exactly opposite
directions with momenta\k provided Awas at rest. Then if
a passes through one of the two holes on the right,b must
pass through the diametrically opposed hole on the left,
therefore a determination of the path of one determines
of the other. However, ifA is at rest its position is totally
uncertain. Conversely, ifA is at the exact center of the setu
its momentum would be totally uncertain, there would be
correlation between the directions ofa and b, and so an
observation on one daughter would not determine the pat
the other.

HenceA’s spatial localizations must exceed some lowe
limit to assure that the daughters can only pass through
pair of diametrically opposed pinholes. This limit is set b
the uncertainty principle and momentum conservation. T
former states thatA’s momentum uncertainty satisfiesDpA

*\/s; the latter that the spread in anglesQ between the
daughters’ momenta is of orderDpA /\k, so that Q
*(1/sk). But if the sourceA is to only illuminate one or the
other of the opposed holes,Q must be much smaller thanw,
143© 2000 American Association of Physics Teachers
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the angle subtended by the two pinholes on one scree
seen fromA ~see Figs. 2 and 3!. Hence the condition onA’s
localization is

s@
1

kw
. ~3!

Here we assume that the energy release in the decay is
enough so that both daughters have momenta of appr
mately the same magnitude\k when ~3! is satisfied.

We now turn to the daughters’ wave functionCout(rarb)
outside the screensSa andSb . As the particles do not inter
act in this region,Cout must be a linear combination of prod
ucts of one-particle wave functions, with each such funct
a spherical wavec(r )5eikr /r emanating from one of the
pinholes. WhenCout is evaluated at the detection screen
one such term isc(La

1)c(Lb
2) for the case wherea emerges

from the upper hole on the right andb from the lower one on
the left, with the various distancesLa,b

6 from the pinholes to
the detectors defined in Fig. 1. In general,Cout is a linear
combination of four such products, with four arbitrary coe
ficients determined by matchingCout at the pinholes to the
wave functionC in(rarb) in the interior region between th
screensSa andSb .

The state ofA is assumed to be a spherically symmet
wave packet of sizes and zero mean momentum centered
the origin. This state is symmetric under reflection throu
the y50 plane shown in Fig. 1 and, provided that the int
action responsible for the processA→a1b is invariant un-

Fig. 1. The parentA is in a state centered on the originO and having zero
mean momentum. It undergoes the momentum-conserving decayA→a
1b, with a detected on the right-hand planeDa , andb on Db , at the points
ya and yb , respectively. To reach the detectors, the daughters must
through one or another pinhole in two parallel screens,Sa andSb , at equal
distance fromO. The lengthsLa,b

6 enter into the amplitudeC(yayb) for
coincidence, Eq.~5!.

Fig. 2. The distances and angles that define the arrangement in Fig.
144 Am. J. Phys., Vol. 68, No. 2, February 2000
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der rotations,C in(rarb) also has this reflection symmetry
Hence the values ofC in at the four pinholes are given by jus
two complex numbers:

C in~ra
1rb

2!5C in~ra
2rb

1!5a,
~4!C in~ra

1rb
1!5C in~ra

2rb
2!5b,

wherera,b
6 are the positions of the pinholes.

These coefficients have a simple meaning:uau2 is the
probability fora andb to pass through diametrically oppose
holes, i.e., forA to have undergone back-to-back deca
whereasubu2 is the probability for both to pass through eith
the two upper or the two lower holes. Clearly,ub/au2!1 if
the initial state ofA satisfies the source size condition, E
~3!.

The outside wave function evaluated at the detecto
when ~4! holds, is

Cout8a~eikLa
1

eikLb
2

1eikLa
2

eikLb
1

!

1b~eikLa
1

eikLb
1

1eikLa
2

eikLb
2

!. ~5!

Here the distanceL0 from the screens to the detectors
assumed to be much larger than that between the hole
either screen, so that the denominators ineikr /r can all be
replaced byL0 , and have then been absorbed into an irr
evant overall factor; in~5! and henceforth,8 means equal
apart from such a factor. In this geometry~the Fraunhofer
diffraction limit!, the various lengths can be approximated

La
65L07uya , Lb

65L07uyb , ~6!

where they coordinates andu are defined in Figs. 1 and 2
With these small-angle approximations,~5! simplifies to

Cout~yayb!8a cos@ku~ya2yb!#1b cos@ku~ya1yb!#.
~7!

For general values ofa/b, this isan entangled state, one that
cannot be expressed as a single product of one-particle w
functions,ca(ya)cb(yb).

The two-particle interference phenomena require, as
have already intimated, that the decay be back-to-back,
is, ub/au2.0. The joint probability distribution for detecting
a at ya andb at yb in coincidence is then

Pab~yayb!8ucos@ku~ya2yb!#u2. ~8!

Fig. 3. The departureU from back-to-back decay. From classical kinema
ics, ^U2&.^pA

2&/2(\k)2, an estimate which is confirmed by a quantum m
chanical calculation.
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This states thatthe coincidence rate will display an interfer
ence pattern in the variableuya2ybu, the ‘‘distance,’’ so to
say, between locations on the widely separated detec
screens.

In striking contrast,the distributions of locations of par
ticles on the individual detection screens show no interf
ence pattern. This is so because the probability for detecti
a at ya, regardless of whereb struck the other detector, is

Pa~ya!5
1

2Y E
2Y

Y

dyb P~yayb!5const1O~1/Y!. ~9!

This distribution is independent ofa’s position, a result that
requires the size 2Y of the detection region forb to be large
enough to yield no information aboutb’s position, i.e.,Y
@(1/ku), the distance between interference fringes.

The existence of an interference effect in the coincide
rate when there is none in the individual rates is a quan
mechanical phenomenon. Hence it is important to unders
why this initially surprising result is, in retrospect, not su
prising!

The absence of an interference pattern in the individ
rates is due to the possibility of determining the path t
both particles took by an observation on just one. To acco
plish this one can, for example, replaceb’s position detector
Db by a device that determinesb’s momentum alongy as it
arrives at the left-hand detection plane. This determi
which hole inSb it traversed and, because of the back-
back decay, which hole in the other screen was traverse
a. Hence there can be no interference pattern in the locat
of a’s position, for that would require a coherent addition
amplitudes from the two holes on the right side, which
excluded by the knowledge of which holea traversed. Of
course, the same conclusion holds forb.

The argument of the preceding paragraph might lead
to suspect that a gross error has been committed in explo
results from two distinct experiments measuring incomp
ible observables. That is not so, however: It is the Einste
Podolsky–Rosen~EPR! feature of this experiment, as will b
made clear in Sec. IV.

To shed further light on what has just been discuss
consider what happens if the back-to-back decay does
dominate, andb is not negligible. In particular, consider th
case where the source sizes is small enough so that the tw
holes on either side are illuminated equally, i.e.,a5b. Then
~7! becomes

Cout~yayb!8cos~kuya!cos~kuyb!. ~10!

This is not an entangled state. It describesindependentdif-
fraction patterns on each of the two detection screens. T
are no correlations in either coordinates or momenta bec
determining which hole is traversed by one particle does
determine the path the other took.

The interference pattern in the coincidence rate wh
back-to-back decay dominates~i.e., uau@ubu! is due to the
correlations in the momenta ofa and b. At the detecting
planes the particles havey components of momentum,pa

andpb , that are either\ku or 2\ku. At each detector there
is a random distribution of events with6\ku, but astrict
correlation between those on the right and left: If one pa
ticle has momentum\ku, the other isguaranteedto have
2\ku. The coordinate space wave function
145 Am. J. Phys., Vol. 68, No. 2, February 2000
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Cout~yayb!8cos@ku~ya2yb!#

is the Fourier transform of a momentum space wave func
F(papb) which expresses the preceding sentence in pre
terms, namely

F8d~pa2\ku!d~pb1\ku!1d~pa1\ku!d~pb2\ku!.
~11!

III. THE TRANSITION FROM ONE- TO TWO-
PARTICLE INTERFERENCE

The two cases already discussed in detail, one where t
are independent one-particle diffraction patterns and no
terference effects in the coincidence rate, and the other w
there is an interference effect in the coincidence rate bu
one-particle diffraction patterns, are limiting cases of t
general situation described by Eq.~5! for arbitrary values of
ub/au[g. The quality that changes along the continuu
from g50 to g51 is the degree of confidence with which
is possible to determine the path of one particle by an ob
vation on the other. Ifg50, it is known for sure which path
a took from a momentum measurement onb, but asg in-
creases this becomes progressively less certain, and the
possible paths become equally probable wheng51. The
transition from two-particle to one-particle interference go
hand-in-hand with this decrease of knowledge attainablein
principle.

It is instructive to phrase the preceding paragraph in m
general terms. Letfn(a;qa) be a wave function of systema,
whose coordinates are collectively designated byqa , and
similarly for b. In the example of Sec. II, at the detectors

f6~a;qa!5eikLa
6

, f6~b;qb!5eikLb
6

. ~12!

Consider now the generic entangled state

C~qaqb!5fn~a;qa!fm~b;qb!1fn8~a;qa!fm8~b;qb!.
~13!

In the probability distribution, this produces the two-partic
interference term

I ab~qa ,qb!

52 Re$fn~a;qa!fn8
* ~a;qa!fm~b;qb!fm8

* ~b;qb!%. ~14!

If b is not detected, the observable quantity is

I ~qa!52 Re$Vfn~a;qa!fn8
* ~a;qa!%, ~15!

whereV, which we may call the visibility amplitude, is

V5E dqbfm~b;qb!fm8
* ~b;qb!. ~16!

Thus a one-particle interference pattern will only be visib
if the statesfm and fm8 of particle b are not orthogonal.

In the example of Sec. II, the two states ofb that interfere
at the detectorDb are orthogonal: They are states of differin
momentum along they direction. Hence there is no interfer
ence in the one-particle probability distribution.

A somewhat differentgedankenexperiment elucidates th
point made in the discussion leading to Eq.~16!. Assumeb is
charged, as inKS→p11p2, and that the screens on th
145Kurt Gottfried
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left-hand side of Fig. 1 are replaced by magnetic traps
leaveb in one or the other of two statesf6(b) if a has the
momentum required to pass through the corresponding ri
hand holera

7 . Then there will be an interference pattern
the probability distribution ofya as long as there is spatia
overlap between these trapped states ofb, because then a
measurement onb does not provide anunambiguousdeter-
mination of the path ofa.

This modified experiment serves to emphasize what is
ready implicit in~15! and~16!: The visibility of the interfer-
ence pattern displayed by a alone when it is in an entang
two-body state is determined by the confidence with which
observation on b can determine the state of a. It need not be
an either-or situation, as it is in the interferometer of Fig
whenb50.

IV. THE EPR FEATURE

Our two-particle interferometer can display the ‘‘spoo
action-at-a-distance’’ feature first discussed by Einste
Podolsky, and Rosen~EPR!. There is, of course, nothing
novel about using a particular measurement on one par
to determine a property of another that is, at the time, a
trarily far away. If it is known that a missile with a know
momentum will separate into two pieces, it suffices to de
mine the momentum of one piece to determine that of
other. But here there are features that are totally foreign
classical physics. The classical momentum correlations
missile breakup would be described by Eq.~11! if it were
taken to bethe joint probability distribution, whereas in
quantum mechanics this expression isthe probability ampli-
tude. The wave-like correlation in positions between pa
ticles at arbitrarily large separations is a consequence of
coherent superposition in momentum space, a concept
does not exist in classical mechanics.

In the original EPR example, and in the more familiar a
practical version due to Bohm in which spins or photon p
larizations are observed, there are strict correlations betw
observables at space-like separations. In this example, t
are only statistical EPR-type correlations, but they too c
convey the misconceptions that instantaneous signalin
possible or that hidden variables are at work.

The EPR feature in our experiment is that afree choice
between determining the position or momentum ofb deter-
mines the diffraction pattern displayed by the distant part
a. This feature is not visible with arbitrarily small pinhole
because such an idealized aperture produces no an
variation in intensity. With pinholes having a finite apertu
2d, the one-particle distribution is no longer uniform, as it
in Eq. ~9!, but becomes

Pa~ya!8Usinke~r2ya!

ke~r2ya!
U2

1Usinke~r1ya!

ke~r1ya!
U2

, ~17!

wheree5d/L0 , r5 l 1 1
2wL0 , and 2l is the distance betwee

the pinholes. This is the incoherent sum of two conventio
one-hole diffraction patterns with centers separated byr.
These diffraction patterns will overlap strongly ife is suffi-
ciently small, as will be assumed.

The EPR correlations can be demonstrated by the foll
ing experiment. On the right, the apparatus always meas
the coordinateya of a, while on the left the apparatu
146 Am. J. Phys., Vol. 68, No. 2, February 2000
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switches at random between measurements of position
momentum ofb. All measurements are done in coincidenc
This does not require communication between the wid
separated ‘‘laboratories’’Da andDb ; there can be a protoco
to insert only one specimen ofA at regularly spaced interval
sufficiently long to insure that both laboratories carry o
observations on the samea1b specimen. After the run is
over, the list of observations that were made onb is trans-
mitted to the other distant laboratory, where the data on
coordinateya are separated into three sets:~1! those where
pb5\ku, ~2! those wherepb52\ku, and ~3! those where
yb was measured. No human intervention is necessary a
the apparatus is set to work; the collection, transmission,
processing of the data can be fully automated.

The prediction of quantum mechanics is that set~1! will
display the diffraction pattern inya from the upper hole
alone@the first term of Eq.~17!#; set~2!, the diffraction pat-
tern from the lower hole~the second term!; and set~3!, the
oscillating correlation functionucos@ku(ya2yb)#u2. While this
particular experiment has not been done, enough exp
ments of the EPR variety have been so that there is no re
to doubt that what has just been claimed would be confirm

As is well known, such a setup provides no means
instantaneous signaling between the two laboratories, tho
in this particular example the ‘‘spookiness’’ is less drama
than in the EPR–Bohm examples because here the cor
tions between observations at space-like separations are
statistical. Nevertheless, before the information concern
the sequence of observations onb reaches the laboratory tha
determined the coordinatesya , the latter only sees a quit
featureless distribution of hits that gives no hint of the c
relation and diffraction patterns that can be extracted o
the information aboutb is in hand.

The interference patterns displayed, or not displayed,
the two-particle wave function are, to underscore it yet aga
determined by what the experimenter can in principle
and not by what is actually done. This is best brought out
the delayed choiceproperty—by the freedom to decid
whether the momentum or coordinate is to be determi
just before the particles are actually detected. What coun
whether the option to make this choice exists, and
whether the option is exercised. If the wave function is
pass the delayed choice test, it must possess a sufficient
ness of properties to cope with all measurements that co
be done in the future. It must, in this example, be able
display itself in a wave-like or particle-like guise, or in var
ous combinations of these guises, depending, so to say
what question will be asked of it.
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SCIENTIFIC OPERA

The more we get into the niceties of the scientific literature, the more extraordinary it becomes.
It is now a real opera. Crowds of people are mobilised by the references; from offstage hundreds
of accessories are brought in. Imaginary readers are conjured up which are not asked only to
believe the author but to spell out what sort of tortures, ordeals and trials the heroes should
undergo before being recognised as such. Then the text unfolds the dramatic story of these trials.
Indeed, the heroes triumph over all the powers of darkness, like the Prince inThe Magic Flute.
The author adds more and more impossible trials just, it seems, for the pleasure of watching the
hero overcoming them. The authors challenge the audience and their heroes sending a new bad
guy, a storm, a devil, a curse, a dragon, and the heroes fight them. At the end, the readers, ashamed
of their former doubts, have to accept the author’s claim. These operas unfold thousands of times
in the pages ofNatureor thePhysical Review~for the benefit, I admit, of very, very few spectators
indeed!.

Bruno Latour,Science in Action—How to Follow Scientists and Engineers Through Society~Harvard University Press,
Cambridge, Massachusetts, 1987!, pp. 53–54.
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